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Rational Combinations of XAk , Ak ~ 0 Are Always Dense in qO,1]
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Several years ago, the second author conjectured that the set of ratios
of finite linear combinations of given, distinct monomials XA1, xAz, ... is dense
in qo, I], assuming all Ak are ?O. This rather bold conjecture was proven
true by Somorjai [I] with the assumption that Ak ~ 00 as k ~ 00. By an
elementary argument, the same result can be extended to any sequence of
distinct monomials as long as AI' A2 , ... are positive and bounded away
from zero. For if {Ak}~=l has a positive limit point, the set of linear com
binations of XAk is dense in qo, I]. (See [2].) However, the above arguments
fail if Ak ~°as k~ 00. The purpose of this note is to show that the original
conjecture is true in all cases. Toward that end, we will prove:

THEOREM. Suppose A'e > 0, k = 1, 2, ... , and A'e ->- °as k ~ 00. Then
for any f E C[O, I] and E > 0, there exists a rational function R(x) =
LZ:l (XkXAkIL~1 f3k xAk such that Ilf - R 11[0.1] ~ E.

Proof By making a routine change of variables, it clearly suffices to
establish the result on a subinterval [0, a], a > 0. In fact, we will show that
any continuous function on [0, lie] can be approximated to within a pre
assigned E by the given rational functions. Also, by passing to a subsequence,
we may assume without loss of generality that {Ak}r~l is a strictly decreasing
sequence. Suppose then that f is continuous on [0, lie] and E > °is given.
Then, if we set

g(u) = !(e-1 / U
),

with the understood limit at u = 0, it follows that g is continuous on [0, 1]
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and by Weierstrass' theorem, there exists an Nth degree polynomial L::~o akuk

such that

Thus, writing x = e-1 / u,

, N -1 k II E
f(x) - I ak --- ~ - .

/) k~O ( log x) I[o.l/eJ 2
(1)

Now, let L~=o Iak I = A and assume (again by passing to a subsequence,
if necessary) that Al ~ E/2A. To reapproximate the "polynomial" in (1),
let Pk(x) denote the kth divided difference of x~ at A = Al , A2 , ... , Ak+l
for k = 0, 1, 2,... , N - 1, i.e.,

Po(x) = Po(x; AI) = X~l,

PI(x) = P1(x; Al , A2) = (X~l - x~2)/(\ - A2),

and, in general

k = 1, 2,... , N - 1,

Then [3, p. 210]

xhk(log X)k
Pix) = k! '

Also, let PN(x) = PN(x; AN ,AN+! ,... , A2N) denote the Nth divided difference
based at the indicated points so that

P ( )
= xhN(log X)N

NX N!'

If we then set

it follows that R is a rational combination of the monomials X~k, and

N 1 k

R(x) = I ak (-r=-) x""
k~O og X

with "lo = 0, 0 < "lk ~ AI' k = t, 2, ... , N.



RATIONAL COMBINATIONS OF X\k, Ak ~ °
Hence

N -1 k 1\ N III - X"'k IIL ak -- - R(x) ~ L I ak I Max k •II k~O (log x ) [O.l/e] k~1 I ~k~N (log x) [O.l/e]
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(2)

Note, however, that for 'Y) > 0, (1 - x"') I log x I is a positive increasing
function on (0, 1) with limx~l_ (1 - x"')/llog x I = 'Y) so that

III - x
n

'I
I log x I[O.l/e] ~ 'Y).

Also, for °~ x ~ lie, I log x I > 1 so that

III - X"'k II
I (log X)k ~ 'Y)k ~ Al .

[0.1Ie]

Thus,

Max 111 - X"'k II ~ Al ~ 2
E
A-

I ~k~N (log X)k [O.l/e]

and by (1) and (2) the proof is complete.

Note. While the approximating rational function was of the form

i.e., R = PIQ with P(O) = Q(O) = 0, the construction can easily be modified
to obtain an approximating rational function with nonzero denominator.
Indeed, since Q(x) =1= °for x > °we may assume Q(x) > °and then we
need only set

R*( ) = yo + P
x 0 + Q '

and sufficiently small 0 > 0.
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